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Abstract

We examine the connections between maximum cardinality edge matchings

in a graph and optimal solutions to the associated linear program, which we

call maximum f-matchings (fractional matchings). We say that a maximum

matching N separates an odd cycle with vertex set S, if M has no edge with

exactly one end in S. An odd cycle is separable if it is separated by at

least one maximum matching . We show that (1) a graph C has a maximum

f-matching that is integer, if and only if it has no separable odd cycles;

(2) the minimum number q of vertex-disjoint odd cycles for which a maximum

f-matching has fractional components, equals the maximum number s of vertex-

disjoint odd cycles, separated by a maximum matching; (3) the difference

between the cardinality of a maximum f-matching and that of a maximum matching

in G is one half times a; (4) any maximum f-matching with fractional

components for a minimum number s of vertex-disloint odd cycles defines a

maximum matching obtainable from it in s steps; and (5) if a maximum

f-matching has fractional components for a set Q of odd cycles tha t is not

minimum, there exists another maximum f-matching with fractional components

for a minimum-cardinality set S of odd cycles , such that SCQ, lQ\~t is

even, and the cycles in Q~S are pairwise connected by alternating paths.
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INTEGER AND FRACTIONAL

EDGE -M~TCRING S

Egon Balas

1. Introduction

Let C = (V,E) be an undirected graph with = m and tE l = n, let

A be the vertex-edge incidence matrix of G, and e~, the p-vector of l’s.

Consider the problem of finding a maximuni-cardinality edge-matching in G

EM(G) max[e~xtAx ~ e~, x

and the associated linear program

LEM(G) max[e~x(Ax 
~ 
e , x~~ 0).

We will call EM(G) the matching problem, and LEM(G) the fractional

matching, or shortly the f-matching problem. A feasible solution to EM(G ) will

be called a matching, a feasible solution to LEM(G), an f-matching. Clearly,

every matching is an f-matching.

We wish to investigate the relationship between maximum matchings

and maximum f-matchings in a graph C, i.e., between optimal solutions to

EM (G) and LEM(G). For a prob lem P, we denote by v(P) the value of (an

optimal solution to) P. For vertex sets S, T ~ V , we denote by (S,T) the

set of edges of G with one end in S and the other in T, and by < S > the

aubgraph of C induced by S. Also, ~ — v\s.

An alternating path relative to a ma tching M is a path whose edges

alternate bstween M and M. An M-augmsnting path is an alternating path whose

end vertices are distinc t and are not incident with N. A mat ching N in G is

of maxi~~~ cardiaality if and only if C contains no N-augmenting path (Berg. 12)).
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If C has no odd cycles (i.e., is bipartite), A is totally unimodular

and every basic solution to LEN (G) is integer, i.e.,

• (1) v(LEM(G) ) — v(EM (~fl ) .

If G is not bipartite, LEN(C) has fractional basic solutions, and the

convex hull of feasible integer solutions, i.e., the matching polytope, is

defined (together with the constraints of LEN(G)) by the inequalities

(2) — 
X

p~~ ~~~~~I St  — 1), S cv , 
~s 1  > 3 and odd

ec(S,S)

(Edmonds [31). Any basic feasible solution to LEM (G) has components equal

to 0,1 or f (Baliaski [13). FurthermOre, if Xe = then e belongs to some

odd cycle C, and xf =~~,~~~fcC.

Let M be a maximum matching in G. If C is bipartite, N is a maximum

f-matching; but the converse is false, as illustrated by the graph in figure 1,

where the maximum matching shown in heavy lines is also a maximum f-matching,

in spite of the presence of a 5-cycle.

~~~~~~~v
v~

FLg. l - Fig. 2

It would seem that whether a maximum matching M is also a maximum

f-matching, depends on whether N covers all vertices of every odd cycle ; but

this is not so. The matching in the graph of figure 2 leaves a vertex of an

odd cycle exposed, yet it is a maximum f-matching. On the other hand , the

•

~ 



.~ r~ c.~ - --—----— ar r~ r”v _,r—,. - -—-—~ — -——--- ----- _r r - • 

- - — - — - — -

—3—

maximum matching N in the graph of figure 3a covers all vertices of the only

odd cycle of the graph , yet it is not a maximum f-matching, as shown by the

f-matching N’ of figure 3b: tMI — 3, while the value of N’ is 3

o l

Fig. 3a Fig. 3b

2. Separable Odd Cycles

The key concept for understanding the connection between maximum

matchings and mav1mi,m f-matchings is the following.

Let N be a maximum matching and C an odd cycle in C, and let S be

the vertex set of C. We will say that N separates C if

(3) Mfl (S,i) — 0

An odd cycle which is separated by at least one maximum matching in G

will be called separable. If C is a separable odd cycle in G , with vertex

set 5, then G has a maximum matching of the form N — LA. UM 2, where N1 and N2
are maximum matchings in < S > and in < S >  respectively. If C is a nonseparable

odd cycle with vertex set S, then every maximum matching contains at least

k + 1 edges incident with S.

Theorem 1. C has a maxisaim f-matching that is integer if and only if

C has no sepa rable odd cycle.
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Proof. Necessity. Let N be a maximum matching in C which separates an odd

cycle C with vertex set S, and 1St  — 2k + 1. Since N is maximal arid Nfl (S,~) 0,
H contains k edges of (S ,S). Let x be the incidence vector of N, and define ~ b y

etC

Xe — 0 ec(S,S)\C

eaE\(S ,S)

Clearly, ~ is a feasible solution to LEM(G), and

v(LEM (G)) ~

- IM~ - It + Fk + 1) > v(EM(G)),

hence C has no maximum f-matching that is integer.

Su~fftciency. Let v(LEM(G)) > v(EM(G)), *nd ict i be a maximum f-matching

in C having fractiona l components for a minimum number of odd cycles, say

Cji•~ •~Cq• For i — l,...,q, let S~ be the vertex set of C~, with ~S1~ 2ki + 1.

Clearly, S1 f i S — 0, ~ i,je[l,...,q). Further, let S — S~. The components.1 i—i
of ~ such tha t 

~e — 1 define a matching M’ in < 5> which is clearly

maximum, or else i itself could not be a maximum f-matching.

For i — l,,..,q, let N1 be a set of ki ~it~~lly nonadjacent edges of C1,

i.e., a maximum matching in < S~ > . Then the edge set

(4) M • H ’U Mj U • • ~~U M q 

- 

H
is a matchi ng in C such tha t Nfl  (S1J~) — 0, i —

Next we prove by contradiction that N is of maximum cardinality , which

implies that th. odd cycles C
1 •••a Cq are all separable and thus completes the

proof of the theorem.

L ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
- 

~~~~~~~~~~~~~~~ 
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Suppose N is not maximum. Then there exists an N-augmenting path

.P—i~n C. Moreover, we claim that the maximum matchings M1 in < S~ >

i — l,...,q, which are not unique, can a lways be chosen such tha t P has no

edge in comnon with any of the cycles C~, i = l,...,q. For suppose P contains

an edge (u,w) eC
i 
for some ie[l,...,q). Since C~ has only one vertex exposed

with respect to M, say t, at least one of the end vertices of the path P, say v,

is not contained in C ., . Of the vertices u and w, let w be the one lying

between u and v in P. Then the maximum matching 
~~ 

in < S~ > can be replaced

by N1, containing those k~ mutually nonadjacent edges of Ci., tha t leave exposed

w rather than t. This replaces the matching M in G by

~~~~~ 
(l.~\N1) U M ~

such that tMI = ~M(. The portion of P between t and w can then be removed,

and the remaining portion, between w and v, is an N-augmenting path P not

containing (u ,w). If ~ still has some edge in co ion with C~, the above

procedure can be repeated. After a finite number of applications of this

procedure, we obtain a- matching M in G such that tNt = IML ,

M M ’UM ~U...UM

(where each is a maximum matching in < Si., >), arid an N-augmenting path

P, not containing any edge of any Ci, 1 — 1,.. .,q. This proves that w.l.o.g.,

the path P can be assumed to have no edge in cormon with any C1, i — l, . . . ,q.

If we now reverse the assignment of edges in P with respec t to N, we

obtain a matching 11* in C, such that 1)1*1 tNt + 1. But from M* one can

construct an f-matching x in G that has fractional components for fewer odd

cycles than i, contrary to our assumptions on i.
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To cons truct x, first note that since P contains no edge of any C1
and is an alternating pa th, P contains no edge of < S >, and the only vertices

of P conta ined in S are one, or possibly both, end vertices of P. The fact

tha t P has at least one vertex in S follows from the maximality of the matching

N’ = Nfl (Li) in <~~~~~~~> •

Let v~ and v be the two end vertices of P. We consider two cases.

Case 1. v~cS
1 
for some ie(l,...,q), v~~S. Let el,...,e2k+l be the edges of

C1, and let e
1 
and C2k+1 be inctdent with v

1
. Define x by

(
l _ . X  ecP

= 
1 ecte2,e4,...,e2k)

e 0 ec
~el,e3,...,e2k+l)

otherwise

Case 2. v
1
tS
1 

and v~ eS~ for some i,jc(l,...,q). Let e r, r — l,...,2k1 + 1,

and d5 , s — ~~~~~~~ + 1, be the edges of C1 and C
.,~ 
respectively, wher,e e1

.~~~~ and e2k +1 are incident with v~, and d1 and d2~ ~~ 
are incident with

caP

I eC(e2 ~~~~~ ‘•2k~~ 
U [dj’~r4L~~. . . ,d~~ ~

— 0 e€Cel,e3,...,e2k +l lU (dl,d3,...,d2k +l)

otherwise.

In Case 1, x has fractiona l components for q - 1 odd cycles, and

e~X e1~i + , since the reversal of edge assignments in P adds 1 to, while

the change of values for etC
1 

sub tracts from, the value of ~~~ In case 2 ,

- 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ T1 ~~~-- -~~~~ ~~~~~~~~~~~ 



-

~~~~~~~~~~~~~~~~~~ -

—7—

x has fractional components for q - 2 odd cycles, and e~x = eL In both

cases the existence of x contradicts our assumption that ~ is a maximum

f-matching which has fractional components for a minimum number (q) of odd

cycles . -

Thus M is a maximum cardinality matching in G, which separates the odd

cycles C1,... ~Cq•ll

The graphs in figures 1 and 2 both have maximum f-matchings that are

integer, since in each case the unique maximum matching shown in heavy lines

does not sepa rate the unique odd cycle of the gra ph, hence the latter has

no separable odd cycle. The graph of figure 3, on the other hand , has a

maximum matching (other than the one shown in figure 3a) which separates the

odd cycle: it contains two edges of the cycle, and a third edge not incident

with any vertex of the cycle. Therefore there exists no maximum f-matching

that is integer.

It is interesting to note that if LEM (G) has an integer optimum,

it does not follow that the linear program dual to LEN(G), namely the
fractional vertex covering problem LVC(G), also has an integer optimum. In

other words, the absence of a separable odd cycle in G does not guarantee that

the cardinality of a maximum edge matching is equal to that of a minimum vertex

cover. For example the gra ph of f igure 4 has no separable odd cycle and

therefore ’it has a maximum f-matching of value 3 that is integer. On the

other hand , the cardinality of a minimum vertex cover is 4, and the fra ctional

vertex cover that assigns value to every vertex v is the only one with value 3.

Fig. 4a Fig. 4b

- 
- 
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The proof of Theorer ~. is constructive in the sense tha t it gives a

procedure for obtaining a maximum matching in an arbitrary graph G from a

maximum f-matching in C that satisfies an additional requirement (having

fractional components for a minimum number of odd cycles). It turns out that

this procedure can be reversed, to obtain a maximum f-matching from a maximum

matching that, again, satisfies an additional requirement: to separa te a

maximum number of disjoint odd cycles. (Two odd cycles are disjoint if they

have no coumon vertex.) The next Corollary and its proof state this relation-

ship more precisely.

For a maximum matching N, let o(G ,N) be the maximum number of disjoint odd

cycles separa ted by N. For a maximum f-matching x, let y(G,x) be the number

of odd cycles for which x has fractional components. Finally, let ~ be the

set of maximum matchings, and .Z the set of maximum f-matchings in G.

Corollary 1.1.

max a(C ,M) a miii y(G,x).
M6~ xet

Proof. In the sufficiency part of the proof of Theorem 1, a maximum

f-matching i such that

y(G,i) = q - mm y(G,x)
x€~~

was used to construct the matching defined by (4), which was shown to be

maximum in G , and which separates q cycles of G. We claim that q = max ~(G,M).

For suppose not, then there exists a maximum matching M* in C that separates

p > q + 1 odd cycles C1,...,C . For 1 — l,•..,p, let S~ be the vertex set of

C1, ~~~ 
— 2k~ + 1, let S — U S~ , and let x be the incidence vector of Me.

i—i 
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Then 3etting x = for eeC1, ~ 1,... 
~~ 

Xe 
= xe otiierwise , defines an

f-matching x such that e~~ = IN *t + p. On the other hand, e~ = tNt + q,

where N is the maximum matching defined by (4). Since tNt = IMeL and p � q + 1.

this contradicts the assumption that ~ is a maximum f-matching in G.~

Next we turn to the relationship between the value of a maximum

f-matching and that of a maximum matching in an arbitrary graph C. Let ~ (G)

denote the differenc e of these two values, i.e.,

(5) A(C) = v(LEM(C)) - v(EM(G)).

It is not hard to derive bounds on ~(G). If C is an odd cycle with

vertex set S , clearly A(< S >) = . Since in the absence of odd cycles in

C, i~(G) = 0, if y(G) is the number of odd cycles in C, it is easy to see that

(6) 
~ (G)

This also yields a bound on A(G) independent of the number of odd

cycles. Indeed, since a cycle has at least 3 edges , y(G) <~~ L E t , i.e.,

(7) A(G) ~~~ L E t

a bound which is attained for any graph G which is the union of triangles.

Further, since 4 tEL <v(~4(G)) obviously holds for any graph C, from

(7) one also has

v(LE14(G)) 3(8) v(EM(G)) 2

) - The bounds (6), (7) and (8) are more or less trivial. The proof of

- 
Theorem 1 yields a considerably stronger bound, namely the actual value of A(C). 



~~~ . ~~~~~~~~~~~~~~~~~~~~~~~ 
- T - ’

~ — 
— - .

-10- 
-

We define the separation number c(G) of a graph C as the maximum number

of disjoint odd cycles separated by any maximum matching in G, i.e.,

c(G) = max a(G,M).

Corollary 1.2. ~ (G) =

Proof. Let i be a maximum f-matching in G such that y(G ,~~) = o(G).

Then the matching N defined by (4) with respect to ~ is maximum, as shown in

the proof of Theorem 1. Clearly, L M I = e~~ -

The difference between the value of a maximum f-matching and that of

a maximum matching can be considerably smaller than y(G), the bound given

by (6), since the separation number cr(G) of a graph can be much smaller than

the number y(G) of its odd cycles. Figure 5 shows a gra ph C with ~(G) 0

and y(C) = 2p, where p can be made arbitrarily large (in the figure, p = 5).

The unique maximum matching, which is also a maximum f-matching in C, is

shown in heavy lines.

~~~ 
/ I..- ~~

Fig. 5

For SCV , we denote by N(S) the set of vertices in S adjacent to

some vertex in S. For vC~J, we denote by 1(v) the set of edges incident with

v in C.
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Corollary 1.3. Every graph C has a maximum f-matching i such that

i’ ecC~ , i =

(9) = 
~~~ 
e
~

(S
i

V)\C
~ , i =

O or 1 ~ ec(S ,S)

and

(10) _____ = 1 , ~~~ vcN(S)
eeI(v) e

where Cj,...,Ca(G) is a maximum-cardinality set of disjoint separable odd

cycles in G, S~ is the vertex set of ~~ I = 1,...,a(G) , and S = SIU . . . U S (G) .

Conversely, every feasible solution i of LEM(G) tha t satisf ies (9)

is a maximum f-matching in G, and also satisfies (10).

Proof. From Corollary 1.1, G has a maximum f-matching i such that

— a(C). Such an i clearly satisfies (9). Conversely, if i sa tisf ies

(9), then the matching N defined by (4) relative to i is maximum in G, hence

c i  - ~~ + o(C) = v(EN(C)) + c(C) and thus i is maximal.

To show by contradiction that every maximum f-matching that satisfies

(9) also satisfies (10) , aippose (10) is violated for some vaN(S). Let ucS~.,

be the vertex of S adjacent to v, and let el,...,e2k +1 be the edges of Ci,

with e
1 

and e2k +l incident with u.

Since (10) is viola ted for v, either 
~e 

= 0,. ~ eaI(v) , or i 4 for
some e

~
cI (v) and 

~e 
= 0, ‘~ eeI(v)\1e~

}. In the first case, the vector ~ defined by

1 e— ( u ,v)
• 1 ee(e,,e,,...,e,1 )

— £ 
~~x -

C ec(el,e3,...,e2k + l)

otherwise

_________ - —~~~~ - . ~~ ~~
. — --.- - 

~~~~~~~ -~~~



_ _  -

— H

-12—

is an f-matching with en = c i  + 4 . In the second case, x defined by

x — , i~~ ecE\(e~:}, 
x = 0, is an f-matching with e x — e i, but withe e e
~

fractional components for ~‘(G,i) - 1 odd cycles. In both cases the outcome

contradicts the assumption that i is a maximum f-matching with fractional

components for a minimum number of odd cycles.~

While every graph has a maximum f-matching i satisfying (9) (and hence

(10)), it is not true that every (basic) maxi~ urn r-matching satisfies (9). In

case of alternative optima there may be only one that satisfies the condition of

Corollary 1.3. The graph C of figure 4, for instance, has the maximum f-matching

shown in 4a, which satisf ies (9) , since G has no separable odd cycle ; but it

also has the one shown in 4b, which does not satisfy the condition of Corollary

1.3. 
-

3. Generating Maximum Matchings from Maximum f-Matchings

Let i be a basic maximum f-matching, let

C(~) =

be the set of odd cycles Ci., such that ~e 
= ~ eeC~, and for i — l ,...,q,

let S
1 

be the vertex set of Ci.,.

We will denote by~~(i) the family of matchings associated with i,
introduced in the proof of Theorem I, i.e., the set of all matchings of the form

M = M ’UN j U • • ~~U M q~

where N’ — [ecEji = 13, and for i — 1,... ,q, Ni 1’ a maximum matching in < Si., > .

We define two operations on the components of i associated with certain

edge sets of C.

~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~ ~~-
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By complementing on E’CE , we mean replacing i~ by i~ — 
~e’ ~ ecE ’.

By alternate rounding on C~ cC(i) , c~ = [el,...,e2k +l), 
we mean

replacing 
~e’ 

eeC~ by 
~
‘
e = ~ ec[e1, e3,...,e2k ÷l), and 

i’ = 1,

ee(e2,...,e2k 3.
i

From the results of the previous section it follow s tha t one way of

finding a maximum matching in a graph is to find a maximum f-matching i with

a minimum-cardinality C (i) and then use al ternative rounding on the odd cycles

in C(~ ) to generate a matching M e ~~(~).

Remark 1. The matchings in~~(i) are of maximum cardinality if and

only if C(i) is of minimum cardunality.

Proof. From Corollaries 1.1 and l.2.~I

Next we address the problem of finding a maximum f-matching i with a

miniznum-cardinality C(i).

Lemma 1. If i is a basic maximum f-matching and q = IC(i)t > ~(G), then

q a(C) (mod 2) .

Proof. Let Me~~(i). Then ~~~ 
— + 4 q, and from Corollary 1.2,

e
0
i — v(EN(G)) + 4 c(G) . Since both jMj and v(EN(G)) are integer, subtracting

the second equa tion from the firs t one produces

- a(G)) 0 (mod 1)

a nd multip lication by 2 yields the congruence in the Lenzna.II

We define an alternating path relative to an f-matching i as a pa th

whose edges e alternate between = 0 and i~ — 1. We say that a path P

connects two odd cycles C , C if P connects a vertex of C to a vertex of C

A vertex v of G is exposed relative to i if 
~e — 0 for all edges e incident with v. 

~~~~~~~~~~~~~~~~~~~~ 
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Theorem 2. Let i be a basic maximum f-matching such that q — tC (i)
l 

> a(G) .

Then G contains ~ — 4(q - ~(G)) vertex-disjoint alternating paths ~k 
relative

to i, each of which connects two odd cycles C4 , C cC (i) , and the cycles
it

C4 , C4 , It = l,...,~ , are all distinct. Furthermore, alternate rounding on
it ~k

the odd cycles C4 , C4 , and complementing on the pa ths P~, k = 1,.. .,~~~,

it ~kproduces a maximum f-matching x with IC(x) I — i~(G) ,

Proof. Let M* be a maximum matching in G and Mc~?(i). Since jMj — c i  - 4 q

and (Me t — c x  - 4 a~G) (Corollary 1.2), (Mej - f M( 4(q - o(G) ) = 
~~. It is

therefore known (see Theorem 1 of (4]) that G contains ~ vertex-disjoint

M-augmenting paths, Tr~ ,...,iT .

We show by contradiction that each connects two cycles, C , C cC(i),

~k~~~~k
~ ~k 

Suppose this is false; then at least one end-vertex of 17k’ say u, is

in S, where S = U S~ . Sinc e < S  > contains no M ’-augmenting pa th (or else i
i—i

would not be a maximum f-matching), 11
k 

is incident with some vertex of S. Let v

be the first vertex of S encountered when TT
k 
is traversed starting from u, and

let be the subpath of 11
k connecting u to v. Clearly, rr~ is an alternating

path relative to i. Then using alternate rounding on C~, the cycle whose

vertex set S~ contains v, and complementing on 1T,~, produces an f-matching x

such that e~x = e~i + 4, contrary to the assumption that i is maximum.
This proves that both end-vertices of 11k belong to S. Further, since

each S1 contains only one vertex exposed relative to N, the sets S4 , S4
it ~kcontaining the two end-vertices of rr.~ are distinct - hence so are the two

cycles C1 , C ; and for the same reason (that each Si contains only oneIt
exposed vertex) the ~ pairs of odd cycles C4 , C4 , connected by the ~ pat hs

it ~kare all distinct.

L - - -  -
~~
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Now using alternate roundi ng on the 2~ odd cycles connected by the

paths 
~~ 

reduces the value of the f-matching for every such cycle by 4, i.e.,

for every pair of cycles C~ , C4 connected by a path ilk, by 1. On the other
It

hand, using complementing on the paths increases the value of the f-matching

by I for every path i1
~
. Thus the alternate rounding and complementing produces

an f-matching x of the same value as i, hence maximum; and it reduces the number
of odd cycles for which the f-matching has fractiona l components , by

2~ = q - 4
Two cycles C~, C1 

with vertex sets S~ , Si 
will be called adjacent, if

there exists ueS~ and yeS1 
such that (u,v)cE. Since the edge (u,v) is an

alternating path relative to i, we have

Corollary 2.1. If two odd cycles C1, C1 
eC(i) are adjacent, with u cC i. v eC 1

and (u,v)cE, then alternate rounding on C~ and C~ and complementing on (u,v),

produces a maximum f-matching x such that tC(~)t = IC(j)I - 2.

Also, from Theorem 2 we have

Corollary 2.2. If tC()L > c(G), there exists a maximum f-matching x

such that C(x)CC(i) and (C (x) j —

Theorem 2 can be used to obtain from an arbitrary basic maximum f-matching,

one with fractional components for a minimum number of odd cycles. The

alternating paths relative to i can be found by a scanning and labeling

procedure of the type used for finding augmenting paths relative to a matching.

The complexity of such a scanning and labeling routine is 0(m2) for each path

found (where m — jvj), and since there are ~ — 4(q - ~(G)) paths to be found,

obtaining from i a maximum f-matching x such that (C(x)l — ~(G) requires at most

0(m2.or) it~p~. -

- 
- 

--—S - —  ~~~~~~~~~~ - --- ~~~~~~~~~~ -
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The problem of finding a maximum f-matching in an arbitrary graph C is

equivalent to the problem of finding a maximum matching in a bipartite graph

G — (V
1
UV2, E1UE2), defined as follows. For every vertex v~eV~ G has a pair

of vertices v11cV
1 

and v~2aV2. For every edge (v~~ v1
)eE , C has a pair of

edges(v11, v12)eE
1 and (v12, v11

)~E2. We say that the vertices v11 and

as well as the edges (v11, v12) and (v12, v .1), are copies of each other. If

we associate the 0-1 vectors y1 and y2 with the edge se ts E
1 

and E
2 

respec tively,

then a matching (p1, ~
2
) in G defines an f-matching i in C via the rule

4. A21 if y
1 — y

1
= l

.1 20 if y
1

y
1

O

1 4 2 .1 2
ify1

O
~~
y
~~

= l , o r y
~~

= l , y
~~= O .

Obviously, a maximum matching N in C then defines a maximum f-matching

of cardina lity in G. Figure 6 shows a graph G with a maximum f-matching,

and the associate.~ gra ph G with the corresponding maximum matching.

11 12

H ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

61 62 L
71 72

F~g. 6a Fia . 6b 

~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~ ~~~~ ~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - - - - -~~~~~~~
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A bipartit . graph of the above type was introduced by Edmonds and

Pulteyblank (see Nemhauser and Trotter (6]) as an equivalent for the fractional

vertex packing probl~~, but the equivalence obviously holds for the fractional

matching problem LEM(C) as well.

Thus finding a maximum f-matching in an arbitrary graph C with n vertices

is reduced to finding a maximum matching in a bipartite graph Ô with 2n vertices.
Hopcroft and tarp t51 give art easy to implement O(n

5
~
’2) algorithm for finding

a maximum matching in a bipartite graph. An algorithm of the same complexity

(0(n5I
~
2)) ,  but much harder to implement, for maximum matching in an arbitrary

gra ph, has been proposed by Even and Kariv [4]. Thus the worst case behavior

of algorithms for maximum matching in a bipartite graph seems to be no better

than that of their counterparts for arbitrary graphs. Nevertheless, the worst

case is not the only, and perhaps not the most relevant one. The need for

handling odd cycles in a matching algorithm for arbitrary graphs either by

shrinking or by special labeling rules, make these algorithms considerably

more difficult to implement than matching algorithms for bipartite graphs.

Thus the idea of using the above described equivalence has some merit, even

though it could not improve the . worst-case bound. However, working out the

details of an algorithm based on this approach is beyond the scope of our paper.

Acknowledgment. I wish to thank Gerard Cornu~jols for helpful conmtents

on an early draft of this paper.
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